Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
biorxiv; 2024.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2024.03.27.586820

ABSTRACT

The highly mutated SARS-CoV-2 variant, BA.2.86, and its descendants are now the most frequently sequenced variants of SARS-CoV-2. We analyze antibody neutralization data from eight laboratories from the UK, USA, Denmark, and China, including two datasets assessing the effect of XBB.1.5 vaccines, to determine the effect of infection and vaccination history on neutralization of variants up to and including BA.2.86, and produce antibody landscapes to describe these neutralization profiles. We find evidence for lower levels of immune imprinting on pre-Omicron variants in sera collected from Denmark and China, which may be explained by lower levels of circulation of the ancestral variant in these countries, and the use of an inactivated virus vaccine in China.

2.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.08.13.553148

ABSTRACT

Bivalent COVID-19 mRNA vaccines expressing both the ancestral D614G and Omicron BA.5 spike proteins were introduced in August 2022 with the goal of broadening immunity to emerging SARS-CoV-2 Omicron subvariants. Subsequent studies on bivalent boosters found neutralizing antibody responses similar to boosters with the original monovalent vaccine, likely the result of immunological imprinting. Guidelines allow for administration of a second bivalent booster in high-risk groups, but it remains unknown whether this would broaden antibody responses. To address this question, we assessed longitudinal serum SARS-CoV-2-neutralizing titers in 18 elderly immunocompetent individuals (mean age 69) following a fourth monovalent booster and two BA.5 bivalent booster vaccines using pseudovirus neutralization assays against D614G, Omicron BA.5, and Omicron XBB.1.5. There was a small but significant increase in peak neutralizing antibody responses against Omicron BA.5 and XBB.1.5 following the first bivalent booster, but no significant increase in peak titers following the second bivalent booster. Omicron-specific neutralizing titers remained low after both doses of the BA.5 bivalent booster. Our results suggest that a second dose of the BA.5 bivalent booster is not sufficient to broaden antibody responses and to overcome immunological imprinting. A monovalent vaccine targeting only the spike of the recently dominant SARS-CoV-2 may mitigate the back boosting associated with the original antigenic sin.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
3.
Redox Biol ; 63: 102752, 2023 07.
Article in English | MEDLINE | ID: covidwho-2324519

ABSTRACT

Viral infection-induced cell death has long been considered as a double-edged sword in the inhibition or exacerbation of viral infections. Patients with severe Coronavirus Disease 2019 (COVID-19) are characterized by multiple organ dysfunction syndrome and cytokine storm, which may result from SARS-CoV-2-induced cell death. Previous studies have observed enhanced ROS level and signs of ferroptosis in SARS-CoV-2 infected cells or specimens of patients with COVID-19, but the exact mechanism is not clear yet. Here, we find SARS-CoV-2 ORF3a sensitizes cells to ferroptosis via Keap1-NRF2 axis. SARS-CoV-2 ORF3a promotes the degradation of NRF2 through recruiting Keap1, thereby attenuating cellular resistance to oxidative stress and facilitated cells to ferroptotic cell death. Our study uncovers that SARS-CoV-2 ORF3a functions as a positive regulator of ferroptosis, which might explain SARS-CoV-2-induced damage in multiple organs in COVID-19 patients and imply the potential of ferroptosis inhibition in COVID-19 treatment.


Subject(s)
COVID-19 , Ferroptosis , Humans , SARS-CoV-2 , Kelch-Like ECH-Associated Protein 1 , NF-E2-Related Factor 2/genetics , COVID-19 Drug Treatment
4.
Emerg Microbes Infect ; 12(1): 2210237, 2023 Dec.
Article in English | MEDLINE | ID: covidwho-2320320

ABSTRACT

The SARS-CoV-2 Omicron subvariants have dominated the pandemic due to their high transmissibility and immune evasion conferred by the spike mutations. The Omicron subvariants can spread by cell-free virus infection and cell-cell fusion, the latter of which is more effective but has not been extensively investigated. In this study, we developed a simple and high-throughput assay that provides a rapid readout to quantify cell-cell fusion mediated by the SARS-CoV-2 spike proteins without using live or pseudotyped virus. This assay can be used to identify variants of concern and to screen for prophylactic and therapeutic agents. We further evaluated a panel of monoclonal antibodies (mAbs) and vaccinee sera against D614G and Omicron subvariants, finding that cell-cell fusion is substantially more resistant to mAb and serum inhibition than cell-free virus infection. Such results have important implications for the development of vaccines and antiviral antibody drugs against cell-cell fusion induced by SARS-CoV-2 spikes.


Subject(s)
Antibodies, Neutralizing , COVID-19 , Humans , Cell Fusion , SARS-CoV-2 , Antibodies, Viral , Antibodies, Monoclonal/pharmacology , Antiviral Agents , Spike Glycoprotein, Coronavirus/genetics
5.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.05.03.539268

ABSTRACT

With the aim of broadening immune responses against the evolving SARS-CoV-2 Omicron variants, bivalent COVID-19 mRNA vaccines that encode the ancestral and Omicron BA.5 spike proteins have been authorized for clinical use, supplanting the original monovalent counterpart in numerous countries. However, recent studies have demonstrated that administering either a monovalent or bivalent vaccine as a fourth vaccine dose results in similar neutralizing antibody titers against the latest Omicron subvariants, raising the possibility of immunological imprinting. Utilizing binding immunoassays, pseudotyped virus neutralization assays, and antigenic mapping, we investigated antibody responses from 72 participants who received three monovalent mRNA vaccine doses followed by either a bivalent or monovalent booster, or who experienced breakthrough infections with the BA.5 or BQ subvariant after vaccinations with an original monovalent vaccine. Compared to a monovalent booster, the bivalent booster did not yield noticeably higher binding titers to D614G, BA.5, and BQ.1.1 spike proteins, nor higher virus-neutralizing titers against SARS-CoV-2 variants including the predominant XBB.1.5 and the emergent XBB.1.16. However, sera from breakthrough infection cohorts neutralized Omicron subvariants significantly better. Multiple analyses of these results, including antigenic mapping, made clear that inclusion of the ancestral spike prevents the broadening of antibodies to the BA.5 component in the bivalent vaccine, thereby defeating its intended goal. Our findings suggest that the ancestral spike in the current bivalent COVID-19 vaccine is the cause of deep immunological imprinting. Its removal from future vaccine compositions is therefore strongly recommended.


Subject(s)
Breakthrough Pain , COVID-19
6.
iScience ; 2023.
Article in English | EuropePMC | ID: covidwho-2273557

ABSTRACT

A better understanding of the durability and breadth of serum neutralizing antibody responses against multiple SARS-CoV-2 variants elicited by Covid-19 vaccines is crucial in addressing the current pandemic. In this study, we quantified the decay of serum neutralization antibodies (nAbs) after second and third doses of the original Covid-19 mRNA vaccine. Using an authentic virus neutralization assay, we found that decay half-lives of WA1- and Delta-nAbs were both ∼60 days post second and third vaccine dose. Unexpectedly, the durability of serum antibodies that neutralize three different Omicron subvariants (BA.1.1, BA.5, BA.2.12.1) was substantially better, with half-lives of ≥ 6 months. A booster dose of the original Covid-19 vaccine was also found to broaden antibody responses against SARS-CoV and four other sarbecoviruses, in addition to multiple SARS-CoV-2 strains. These findings suggest that repeated vaccinations with the Covid-19 vaccine may confer a degree of protection against future spillover of sarbecoviruses from animal reservoirs. Graphical abstract

8.
iScience ; 26(4): 106345, 2023 Apr 21.
Article in English | MEDLINE | ID: covidwho-2273558

ABSTRACT

A better understanding of the durability and breadth of serum-neutralizing antibody responses against multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants elicited by COVID-19 vaccines is crucial in addressing the current pandemic. In this study, we quantified the decay of serum neutralization antibodies (nAbs) after second and third doses of the original COVID-19 mRNA vaccine. Using an authentic virus-neutralization assay, we found that decay half-lives of WA1- and Delta-nAbs were both ∼60 days after second and third vaccine dose. Unexpectedly, the durability of serum antibodies that neutralize three different Omicron subvariants (BA.1.1, BA.5, BA.2.12.1) was substantially better, with half-lives of ≥6 months. A booster dose of the original COVID-19 vaccine was also found to broaden antibody responses against SARS-CoV and four other sarbecoviruses, in addition to multiple SARS-CoV-2 strains. These findings suggest that repeated vaccinations with the COVID-19 vaccine may confer a degree of protection against future spillover of sarbecoviruses from animal reservoirs.

9.
Emerg Microbes Infect ; : 1-52, 2022 Nov 10.
Article in English | MEDLINE | ID: covidwho-2242917

ABSTRACT

Increasing spread by SARS-CoV-2 Omicron variants challenges existing vaccines and broadly reactive neutralizing antibodies (bNAbs) against COVID-19. Here we determine the diversity, potency, breadth and structural insights of bNAbs derived from memory B cells of BNT162b2-vaccinee after homogeneous Omicron BA.1 breakthrough infection. The infection activates diverse memory B cell clonotypes for generating potent class I/II or III bNAbs with new epitopes mapped to receptor-binding domain (RBD). The top eight bNAbs neutralize wildtype and BA.1 potently but display divergent IgH/IgL sequences and neuralization profiles against other variants of concern (VOCs). Two of them (P2D9 and P3E6) belonging to class III NAbs display comparable potency against BA.4/BA.5, although structural analysis reveals distinct modes of action. P3E6 neutralizes all variants tested through a unique bivalent interaction with two RBDs. Our findings provide new insights into hybrid immunity on BNT162b2-induced diverse memory B cells in response to Omicron breakthrough infection for generating diverse bNAbs with distinct structural basis.

10.
Cell ; 186(6): 1263-1278.e20, 2023 03 16.
Article in English | MEDLINE | ID: covidwho-2229215

ABSTRACT

A major challenge in understanding SARS-CoV-2 evolution is interpreting the antigenic and functional effects of emerging mutations in the viral spike protein. Here, we describe a deep mutational scanning platform based on non-replicative pseudotyped lentiviruses that directly quantifies how large numbers of spike mutations impact antibody neutralization and pseudovirus infection. We apply this platform to produce libraries of the Omicron BA.1 and Delta spikes. These libraries each contain ∼7,000 distinct amino acid mutations in the context of up to ∼135,000 unique mutation combinations. We use these libraries to map escape mutations from neutralizing antibodies targeting the receptor-binding domain, N-terminal domain, and S2 subunit of spike. Overall, this work establishes a high-throughput and safe approach to measure how ∼105 combinations of mutations affect antibody neutralization and spike-mediated infection. Notably, the platform described here can be extended to the entry proteins of many other viruses.


Subject(s)
COVID-19 , RNA Viruses , Humans , SARS-CoV-2/genetics , Mutation , Antibodies, Neutralizing , Antibodies, Viral
13.
Cell ; 186(2): 279-286.e8, 2023 Jan 19.
Article in English | MEDLINE | ID: covidwho-2158568

ABSTRACT

The BQ and XBB subvariants of SARS-CoV-2 Omicron are now rapidly expanding, possibly due to altered antibody evasion properties deriving from their additional spike mutations. Here, we report that neutralization of BQ.1, BQ.1.1, XBB, and XBB.1 by sera from vaccinees and infected persons was markedly impaired, including sera from individuals boosted with a WA1/BA.5 bivalent mRNA vaccine. Titers against BQ and XBB subvariants were lower by 13- to 81-fold and 66- to 155-fold, respectively, far beyond what had been observed to date. Monoclonal antibodies capable of neutralizing the original Omicron variant were largely inactive against these new subvariants, and the responsible individual spike mutations were identified. These subvariants were found to have similar ACE2-binding affinities as their predecessors. Together, our findings indicate that BQ and XBB subvariants present serious threats to current COVID-19 vaccines, render inactive all authorized antibodies, and may have gained dominance in the population because of their advantage in evading antibodies.


Subject(s)
Antibodies, Viral , COVID-19 , Immune Evasion , SARS-CoV-2 , Humans , Antibodies, Monoclonal , Antibodies, Neutralizing , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines , SARS-CoV-2/classification , SARS-CoV-2/genetics
14.
Cell Host Microbe ; 30(11): 1512-1517.e4, 2022 11 09.
Article in English | MEDLINE | ID: covidwho-2118001

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron subvariant BA.2.75 emerged recently and appears to be spreading. It has nine mutations in spike compared with the currently circulating BA.2, raising concerns that it may further evade vaccine-elicited and therapeutic antibodies. We found BA.2.75 to be moderately more neutralization resistant to sera from vaccinated/boosted individuals than BA.2 (1.8-fold), similar to BA.2.12.1 (1.1-fold), but more neutralization sensitive than BA.4/5 (0.6-fold). Relative to BA.2, BA.2.75 showed heightened resistance to class 1 and class 3 monoclonal antibodies targeting the spike-receptor-binding domain while gaining sensitivity to class 2 antibodies. Resistance was largely conferred by G446S and R460K mutations. BA.2.75 was slightly resistant (3.7-fold) to bebtelovimab, a therapeutic antibody with potent activity against all Omicron subvariants. BA.2.75 also exhibited a higher binding affinity to host receptor ACE2 than other Omicron subvariants. BA.2.75 provides further insight into SARS-CoV-2 evolution as it gains transmissibility while incrementally evading antibody neutralization.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Neutralization Tests , Antibodies, Monoclonal , Antibodies, Viral , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Neutralizing
15.
Front Immunol ; 13: 977064, 2022.
Article in English | MEDLINE | ID: covidwho-2099147

ABSTRACT

Variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have emerged continuously, challenging the effectiveness of vaccines, diagnostics, and treatments. Moreover, the possibility of the appearance of a new betacoronavirus with high transmissibility and high fatality is reason for concern. In this study, we used a natively paired yeast display technology, combined with next-generation sequencing (NGS) and massive bioinformatic analysis to perform a comprehensive study of subdomain specificity of natural human antibodies from two convalescent donors. Using this screening technology, we mapped the cross-reactive responses of antibodies generated by the two donors against SARS-CoV-2 variants and other betacoronaviruses. We tested the neutralization potency of a set of the cross-reactive antibodies generated in this study and observed that most of the antibodies produced by these patients were non-neutralizing. We performed a comparison of the specific and non-specific antibodies by somatic hypermutation in a repertoire-scale for the two individuals and observed that the degree of somatic hypermutation was unique for each patient. The data from this study provide functional insights into cross-reactive antibodies that can assist in the development of strategies against emerging SARS-CoV-2 variants and divergent betacoronaviruses.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Humans , Membrane Glycoproteins , Neutralization Tests , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Envelope Proteins
17.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.10.22.513349

ABSTRACT

The SARS-CoV-2 Omicron variant and its numerous sub-lineages have exhibited a striking ability to evade humoral immune responses induced by prior vaccination or infection. The Food and Drug Administration (FDA) has recently granted Emergency Use Authorizations (EUAs) to new bivalent formulations of the original Moderna and Pfizer mRNA SARS-CoV-2 vaccines that target both the ancestral strain as well as the Omicron BA.4/BA.5 variant. Despite their widespread use as a vaccine boost, little is known about the antibody responses induced in humans. Here, we collected sera from several clinical cohorts: individuals after three or four doses of the original monovalent mRNA vaccines, individuals receiving the new bivalent vaccines as a fourth dose, and individuals with BA.4/BA.5 breakthrough infection following mRNA vaccination. Using pseudovirus neutralization assays, these sera were tested for neutralization against an ancestral SARS-CoV-2 strain, several Omicron sub-lineages, and several related sarbecoviruses. At ~3-5 weeks post booster shot, individuals who received a fourth vaccine dose with a bivalent mRNA vaccine targeting BA.4/BA.5 had similar neutralizing antibody titers as those receiving a fourth monovalent mRNA vaccine against all SARS-CoV-2 variants tested, including BA.4/BA.5. Those who received a fourth monovalent vaccine dose had a slightly higher neutralizing antibody titers than those who received the bivalent vaccine against three related sarbecoviruses: SARS-CoV, GD-Pangolin, and WIV1. When given as a fourth dose, a bivalent mRNA vaccine targeting Omicron BA.4/BA.5 and an ancestral SARS-CoV-2 strain did not induce superior neutralizing antibody responses in humans, at the time period tested, compared to the original monovalent vaccine formulation.


Subject(s)
Breakthrough Pain
18.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2033880

ABSTRACT

Variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have emerged continuously, challenging the effectiveness of vaccines, diagnostics, and treatments. Moreover, the possibility of the appearance of a new betacoronavirus with high transmissibility and high fatality is reason for concern. In this study, we used a natively paired yeast display technology, combined with next-generation sequencing (NGS) and massive bioinformatic analysis to perform a comprehensive study of subdomain specificity of natural human antibodies from two convalescent donors. Using this screening technology, we mapped the cross-reactive responses of antibodies generated by the two donors against SARS-CoV-2 variants and other betacoronaviruses. We tested the neutralization potency of a set of the cross-reactive antibodies generated in this study and observed that most of the antibodies produced by these patients were non-neutralizing. We performed a comparison of the specific and non-specific antibodies by somatic hypermutation in a repertoire-scale for the two individuals and observed that the degree of somatic hypermutation was unique for each patient. The data from this study provide functional insights into cross-reactive antibodies that can assist in the development of strategies against emerging SARS-CoV-2 variants and divergent betacoronaviruses.

19.
mBio ; 13(5): e0214122, 2022 10 26.
Article in English | MEDLINE | ID: covidwho-2001782

ABSTRACT

Examining the neutralizing capacity of monoclonal antibodies (MAbs) used to treat COVID-19, as well as antibodies recovered from unvaccinated, previously vaccinated, and infected individuals, against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) remains critical to study. Here, we report on a SARS-CoV-2 nosocomial outbreak caused by the SARS-CoV-2 R.1 variant harboring the E484K mutation in a 281-bed psychiatric facility in New Jersey among unvaccinated inpatients and health care professionals (HCPs). A total of 81 inpatients and HCPs tested positive for SARS-Cov-2 by reverse transcription (RT)-PCR from 29 October 9 to 30 November 2020. The R.1 variant exhibits partial or complete resistance to two MAbs in clinical use, as well as 2 receptor binding domain MAbs and 4 N-terminal domain (NTD) MAbs. NTD MAbs against pseudovirus harboring single characteristic R.1 mutations highlight the role of S255F in loss of activity. Additionally, we note dampened neutralization capacity by plasma from individuals with previous SARS-CoV-2 infection or sera from vaccinated individuals. The relative resistance of the R.1 variant is likely lower than that of B.1.351 and closer to that of P.1 and B.1.526. The R.1 lineage has been reported in 47 states in the United States and 40 countries. Although high proportions exhibited symptoms (26% and 61% among patients and HCPs, respectively) and relative antibody resistance, we detected only 10 R.1 variants from over 2,900 samples (~0.34%) collected from January to October 2021. Among 3 vaccinated individuals previously infected with R.1, we observed robust neutralizing antibody responses against SARS-CoV-2 wild type and VOCs. IMPORTANCE The neutralizing capacities of monoclonal antibodies used to treat COVID-19 and of those recovered from previously infected and vaccinated individuals against SARS-CoV-2 variants of concern (VOCs) remain important questions. We report on a nosocomial outbreak caused by a SARS-CoV-2 R.1 variant harboring an E484K mutation among 81 unvaccinated inpatients and health care professionals. We note high attack rates with symptoms in nearly 50% of infected individuals, in sharp contrast to an unrelated institutional outbreak caused by the R.1 variant among a vaccinated population. We found little evidence of significant community spillover. This variant exhibits partial or complete resistance to two monoclonal antibodies in clinical use and dampened the neutralization capacity of convalescent-phase plasma from individuals with previous infection or sera from vaccinated individuals. Among three vaccinated individuals previously infected with R.1, we observed robust neutralizing antibody responses against SARS-CoV-2 wild type and VOCs. These findings underscore the importance of vaccination for prevention of symptomatic COVID-19 disease.


Subject(s)
COVID-19 , Cross Infection , Humans , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , COVID-19/epidemiology , Neutralization Tests , Antibodies, Viral , New Jersey/epidemiology , Antibodies, Neutralizing , Disease Outbreaks , Antibodies, Monoclonal , Genomics
20.
J Med Virol ; 94(11): 5574-5581, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1995545

ABSTRACT

Mortality in coronavirus disease 2019 (COVID-19) patients has been linked to the presence of a "cytokine storm" induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which involves elevated levels of circulating cytokines and immune-cell hyperactivation. Targeting cytokines during the management of COVID-19 patients has the potential to improve survival rates and reduce mortality. Although cytokine blockers and immune-host modulators are currently being tested in severely ill COVID-19 patients to cope with the overwhelming systemic inflammation, there is not too many successful cases, thus finding new cytokine blockers to attenuate the cytokine storm syndrome is meaningful. In this paper, we significantly attenuated the inflammatory responses induced by mouse hepatitis viruses A59 and SARS-CoV-2 through a soluble DR5-Fc (sDR5-Fc) chimeric protein that blocked the TNF-related apoptosis-inducing ligand-death receptor 5 (TRAIL-DR5) interaction. Our findings indicates that blocking the TRAIL-DR5 pathway through the sDR5-Fc chimeric protein is a promising strategy to treat COVID-19 severe patients requiring intensive care unit  admission or with chronic metabolic diseases.


Subject(s)
COVID-19 Drug Treatment , Receptors, TNF-Related Apoptosis-Inducing Ligand/immunology , SARS-CoV-2 , Animals , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/prevention & control , Cytokines/metabolism , Mice , Recombinant Fusion Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL